GPU-Based Volume Reconstruction from Very Few Arbitrarily Aligned X-Ray Images
نویسندگان
چکیده
This paper presents a three-dimensional GPU-accelerated algebraic reconstruction method in a few-projection cone-beam setting with arbitrary acquisition geometry. To achieve artifact-reduced reconstructions in the challenging case of unconstrained geometry and extremely limited input data, we use linear methods and an artifact-avoiding projection algorithm to provide high reconstruction quality. We apply the conjugate gradient method in the linear case of Tikhonov regularization and the two-point-step-size gradient method in the nonlinear case of total variation regularization to solve the system of equations. By taking advantage of modern graphics hardware we achieve acceleration of up to two orders of magnitude over classical CPU implementations.
منابع مشابه
Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملFast GPU-Driven Model-Based X-Ray CT Image Reconstruction via Alternating Dual Updates
Model-based image reconstruction (MBIR) methods for X-ray CT reconstruction can improve image quality and reduce patient X-ray dose. These methods produce images by solving high-dimensional, statistically motivated numerical optimization problems, but unfortunately the high computational costs of solving these problems have kept MBIR algorithms from reaching ubiquity in the clinic. In this pape...
متن کاملGPU-based fast low-dose cone beam CT reconstruction via total variation.
X-ray imaging dose from serial Cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. The goal of this paper is to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data ...
متن کاملA Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.
A ray-driven backprojector is based on ray-tracing, which computes the length of the intersection between the ray paths and each voxel to be reconstructed. To reduce the computational burden caused by these exhaustive intersection tests, we propose a fully graphics processing unit (GPU)-based ray-driven backprojector in conjunction with a ray-culling scheme that enables straightforward parallel...
متن کاملUltra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.
The purpose of this work is to demonstrate an ultra-fast reconstruction technique for digital tomosynthesis (DTS) imaging based on the algorithm proposed by Feldkamp, Davis, and Kress (FDK) using standard general-purpose graphics processing unit (GPGPU) programming interface. To this end, the FDK-based DTS algorithm was programmed "in-house" with C language with utilization of 1) GPU and 2) cen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 31 شماره
صفحات -
تاریخ انتشار 2009